Coincidence studies of electron impact excitation of Zn atoms

M. Piwiński¹, Ł. Kłosowski¹, D. Dziczek¹, and S. Chwirot¹

Presenting Author: Mariusz.Piwinski@fizyka.umk.pl

In recent years there has been a growing interest in zinc as a replacement material for toxic mercury in discharge lamps [1]. However, insufficient knowledge of both the Zn properties and mechanisms of the collisional excitation of the atomic states of interest has been a serious obstacle to improving the Zn bulb technology. Due to limited experimental and theoretical data on electron scattering from zinc atoms, recently some attention has been focused in this direction [2,3,4].

The electron-photon coincidence experiment in the coherence analysis version was used to obtain the most detailed information about impact excitation of zinc atoms to $4^{1}P_{1}$ state. The present work is a continuation of our research on electron impact excitation of Zn atom [2,3] and a part of broader studies concerning the atoms with two valence electrons outside relatively inert core like Ca [5], Cd [6,7] and He [8]. Geometry of the experiment which was typical for the coherence analysis technique and the experimental set-up and procedures were described in our earlier work [2].

Stokes and Electron Impact Coherence Parameters (EICPs) for electronic excitation of $4^{1}P_{1}$ state of zinc atoms has been measured for incident electron energy of 60 eV. Examples of graphical representations of angular distributions of the electron charge cloud of the excited $4^{1}P_{1}$ state of Zn corresponding to the values of the EICPs for angles 10° and 20° are presented in Figure 1.

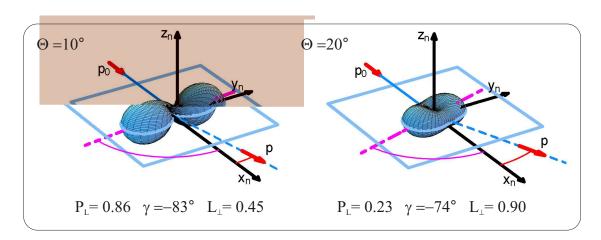


Figure 1: Graphical representations of angular distribution of electron charge cloud corresponding to the measured EICPs for $Zn \ 4^1P_1$ excitation by 60 eV electrons for scattering angles 10 ° and 20 °.

References

- [1] M. Born and M. Strösser J. Phys. D: Appl. Phys. 40, 3823–3828 (2007)
- [2] M. Piwiński *et al.* Phys. Rev. A **86**, 052706 (2012)
- [3] M. Piwiński *et al.* Eur. Phys. J.-Spec. Top. **222**, 2273–2277 (2013)
- [4] Tapasi Das et al. Phys. Lett. A 378, 641–643 (2014)
- [5] D. Dyl *et al.* J. Phys. B: At. Mol. Opt. Phys. **32**, 837–844 (1999)
- [6] M. Piwiński *et al.* J. Phys. B: At. Mol. Opt. Phys. **35**, 3821–3827 (2002)
- [7] M. Piwiński *et al.* J. Phys. B: At. Mol. Opt. Phys. **39**, 1945–1953 (2006)
- [8] Ł. Kłosowski *et al.* Phys. Rev. A **80**, 062709 (2009)

¹Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100

Torun. Poland